Downregulation of the immunoproteasome subunit PSMB8 attenuates sepsis-associated acute kidney injury through the NF-κB pathway

Immunobiology. 2024 Dec 7;230(1):152862. doi: 10.1016/j.imbio.2024.152862. Online ahead of print.

Abstract

Sepsis-associated acute kidney injury (S-AKI) is a prevalent and life-threatening complication in hospitalized and critically ill patients. Recent researches indicates that immunoproteasome, especially proteasome 20S subunit beta 8 (PSMB8), is highly associated with various kidney diseases. This study aims to investigate the potential involvement of PSMB8 in S-AKI and its impact on apoptosis and inflammation. The model of S-AKI induced by LPS (10 mg/kg) was assessed by histological examination. ELISA and Real-time PCR were used to detect the levels of inflammatory cytokines in the renal cortex. The role of shPSMB8 in LPS-induced apoptosis was detected by flow cytometry. Finally, western blot was performed to assess the NF-κB signaling pathway related proteins, and the nuclear translocation of NF-kB P65 was detected by immunofluorescence microscopy. PSMB8 knockdown substantially protected against renal injury by reducing blood urea nitrogen and creatinine levels and ameliorating inflammation. PSMB8 knockdown inhibited renal expression of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α) and COX-2 to improve inflammatory response. Mechanistic studies demonstrated that downregulation of PSMB8 blocked LPS-induced S-AKI phosphorylation and nuclear translocation of NF-κB P65. Collectively, our results suggest that inhibition of PSMB8 significantly contributes to S-AKI via regulation of NF-κB. These findings reveal the pathogenic role of PSMB8 in AKI and suggest a novel therapeutic target for the condition.

Keywords: Apoptosis; Inflammation; NF-κB; PSMB8; Sepsis-induced acute kidney.