Gravity-driven membrane (GDM) systems are increasingly recognized as sustainable and energy-efficient solutions for decentralized water treatment. However, membrane fouling, particularly by organic matter, remains a significant operational challenge, necessitating regular chemical cleaning to maintain performance. The present study was undertaken to investigate the cleaning efficiency of sodium dichloroisocyanurate (NaDCC) tablets, a novel solid-state alternative to conventional liquid cleaning agents such as sodium hypochlorite (NaOCl), sodium lauryl sulfate (SLS), acetic acid, and citric acid. NaDCC tablets, originally developed for drinking water disinfection, offer advantages in terms of transport, storage, and safety compared with conventional liquid formulations. A comparative evaluation of cleaning agents was conducted on hollow fiber membranes used in GDM systems, with the concentration and contact times optimized for each chemical. NaOCl demonstrated the highest permeability recovery, reaching 48.29% at 500 mg L-1 after 12 h, followed closely by NaDCC, with a recovery of 46.55% under similar conditions. Conversely, SLS, acetic acid, and citric acid presented significantly lower recovery rates, with maximum flux restorations of 14.57%, 14.90%, and 16.73%, respectively. These results highlight the comparable performance of NaDCC and NaOCl in addressing organic fouling while offering practical advantages such as greater stability and reduced chemical handling risks. This study highlights the efficacy of NaDCC as a viable detergent for GDM systems, and also provides a comprehensive comparative analysis of the water permeability performances of commercial detergents such as NaOCl, which cause various ecotoxicities, and suggests the feasibility of NaDCC as a chemical detergent in practical membrane processes. Our findings contribute to the development of more sustainable and cost-effective membrane-cleaning protocols that enhance long-term operational efficiency and minimize environmental impacts.
Keywords: Membrane cleaning; Organic fouling; Sodium dichloroisocyanurate; Surface water treatment.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.