Among the myriad of complications associated with traumatic brain injury (TBI), impairments in social behaviors and cognition have emerged as a significant area of concern. Animal models of social behavior are necessary to explore the underlying brain mechanisms contributing to chronic social impairments following brain injury. Here, we utilize large-scale brain recordings of local field potentials to identify neural signatures linked with social preference deficits following frontal brain injury. We used a controlled cortical impact model of TBI to create a severe bilateral injury centered on the prefrontal cortex. Behavior (social preference and locomotion) and brain activity (power and coherence) during a three-chamber social preference task were compared between sham and injured animals. Sham rats preferred to spend time with a social conspecific over an inanimate object. An analysis of local field oscillations showed that social preference was associated with a significant increase in coherence in gamma frequency band across widespread brain regions in these animals. Animals with a frontal TBI showed a significant reduction in this social preference, visiting an inanimate object more frequently and for more time. Reflecting these changes in social behavior, these animals also showed a significant reduction in gamma frequency (25-60 Hz) coherence associated with social preference.
Keywords: Fronto-striatal networks; Gamma frequency; Social preference; Traumatic brain injury.
Our results indicate that disturbance in the gamma band network is associated with reduced social preference following frontal TBI. Importantly, the deficits we observed are network-wide, extending far beyond the focal site of injury. Our study identifies a potential neural signature of social preference that could be manipulated to improve social behaviors and may have translational relevance.
© 2024 Massachusetts Institute of Technology.