Tuning the Selectivity in the Nonoxidative Alkane Dehydrogenation Reaction by Potassium-Promoted Zeolite-Encapsulated Pt Catalysts

JACS Au. 2024 Dec 1;4(12):4934-4947. doi: 10.1021/jacsau.4c00949. eCollection 2024 Dec 23.

Abstract

The significance of the nonoxidative dehydrogenation of middle-chain alkanes into corresponding alkenes is increasing in the context of the world's declining demands on transportation fuels and the growing demand for chemicals and materials. The middle-chain alkenes derived from the dehydrogenation reaction can be transformed into value-added chemicals in downstream processes. Due to the presence of multiple potential reaction sites, the reaction mechanism of the dehydrogenation of middle-chain alkanes is more complicated than that in the dehydrogenation of light alkanes, and there are few prior studies on elucidating their detailed structure-reactivity relationship. In this work, we have employed Pt catalysts encapsulated in pure-silica MFI zeolite crystallites as model catalysts and studied how the catalytic performances for dehydrogenation of n-pentane can be modulated by the K+ promotor in the Pt-MFI catalyst. A combination of comprehensive structural characterizations by aberration-corrected electron microscopy, X-ray absorption spectroscopy, in situ CO-IR, X-ray photoelectron spectroscopy, and kinetic studies shows that K+ promoter can not only influence the particle size but also modify the electronic properties of Pt species, which further affect the activity and selectivity in the dehydrogenation of n-pentane.