Early diagnosis of tumors is becoming increasingly important in modern healthcare. As studies have demonstrated, Poly(ADP)ribose polymerase-1 (PARP-1) is overexpressed in more aggressive tumors. Consequently, sensitive detection of PARP-1 activity holds significant practical importance in clinical diagnostics and biomedical research. Herein, an electrochemical biosensor for the sensitive monitoring of the PARP-1 activity have been proposed. The presence of target PARP-1 firstly triggers enzyme-initiated auto-PARylation and formed negatively charged polymer consisting of a few to 200 ADP-ribose units. Due to electrostatic adsorption, negatively charged PAR will bind with a large number of positively charged methylene blue (MB) electroactive molecules. By detecting the electrochemical signal of MB on the indium tin oxide (ITO) electrode, PARP-1 activity detection was achieved with a linear detection range of 0-1.0 U and a detection limit as low as 0.003 U. The proposed biosensor shows great prospects of clinical application.
Keywords: Biosensor; Electrochemical biosensor; Electrostatic adsorption; MB; PAR; PARP-1 detection.
Copyright © 2024. Published by Elsevier B.V.