The identification of allosteric binding sites forms a critical connection between structural and computational biology, substantially advancing the discovery of allosteric drugs. However, the prevailing strategies for allosteric drug development predominantly rely on high-throughput screening, which suffers from high failure rates due to a limited understanding of allosteric mechanisms. This review collects insights from case studies on allosteric mechanisms, protein structure databases and computation algorithm developments, aiming to enhance our comprehension of allostery and guide more effective allosteric drug development. A crucial element in this area is the integration of structural biology with computational biology, which is vital for translating three-dimensional structural datasets into available drug discovery knowledge. These datasets and AI algorithms underpin the establishment of the allosteric binding site identification leading to structure-activity relationships (SARs) and are fueling the development of computational algorithms tailored for allosteric proteins, thereby driving forward the field of allosteric drug discovery.
Copyright © 2024 Elsevier Ltd. All rights reserved.