Bacterial implant-associated infections predominantly contribute to the failure of prosthesis implantation. The local biofilm microenvironment (BME), characterized by its hyperacidic condition and high hydrogen peroxide (H2O2) level, inhibits the host's immune response, thereby facilitating recurrent infections. Here, a Janus PEGylated CuS nanoparticle (CuPen) armed engineered Lactobacillus casei (L. casei) denoted as LC@CuPen, is proposed to interfere with bacterial metabolism and arouse macrophage antibiofilm function. Once LC@CuPen reached the BME, NIR irradiation-activated mild heat damages L. casei and biofilm structure. Meanwhile, the BME-responsive LC@CuPen can catalyze local H2O2 to produce toxic •OH, whereas in normal tissues, the effect of •OH production is greatly reduced due to the higher pH and lower H2O2 concentration. The released bacteriocin from damaged L. casei can destroy the bacterial membrane to enhance the penetration of •OH into damaged biofilm. Excessive •OH interferes with normal bacterial metabolism, resulting in reduced resistance of bacteria to heat stress. Finally, under the action of mild heat treatment, the bacterial biofilm lysed and died. Furthermore, the pathogen-associated molecular patterns (PAMPs) in LC@CuPen can induce M1 polarization of macrophages through NF-κB pathway and promote the release of inflammatory factors. Inflammatory factors enhance the migration of macrophages to the site of infection and phagocytose bacteria, thereby inhibiting the recurrence of infection. Generally, this engineered L. casei program presents a novel perspective for the treatment of bacterial implant-associated infections and serves as a valuable reference for future clinical applications of engineered probiotics.
Keywords: Bacterial biofilm infection; Bacteriocin; Engineered probiotics; Innate immunomodulation; Macrophage.
Copyright © 2024 Elsevier Ltd. All rights reserved.