Tetraarylphosphonium Cations with Excellent Alkaline-Resistant Performance for Anion-Exchange Membranes

ChemSusChem. 2024 Dec 29:e202402366. doi: 10.1002/cssc.202402366. Online ahead of print.

Abstract

To realize the robust anion exchange membrane (AEM)-based water splitting modules and fuel cells, the design and synthesis of tetraarylphosphonium (TAP) cations are described as a new class of cationic building blocks that exhibit remarkable alkaline stability under harsh conditions. TAP cations with highly sterically demanding aromatic substituents were efficiently synthesized from triarylphosphine derivatives and highly reactive arynes, whose alkaline degradation proved to be suppressed dramatically by the sterically demanding substituents. In the case of bis(2,5-dimethylphenyl)bis(2,4,6-trimethylphenyl)phosphonium, for example, approximately 60% of the cation survived for 27 d under the forced conditions (i.e., in 4 M KOH/CD3OH at 80 °C), while tetraphenylphosphonium degraded completely within 10 min in 1 M KOH/CD3OH at that temperature. Through the decomposition of the alkaline-stable TAP cations, not only triarylphosphine oxides, which are often reported to form via the nucleophilic attack toward the cationic phosphorus center, but also triarylphosphines were detected, which suggested the presence of other degradation mechanisms due to the sterically demanding aromatic substituents. In kinetic analyses, bis(2,5-dimethylphenyl)bis(2,4,6-trimethylphenyl)phosphonium was found to exhibit 52 times higher stability compared to benzyltrimethylammonium, which is often employed as the cationic building block for AEMs.

Keywords: Alkaline stability; Anion exchange membranes; Fuel cells; Tetraarylphosphoniums; Water splitting.