Somatic variants play a crucial role in the occurrence and progression of cancer. However, in the absence of matched normal controls, distinguishing between germline and somatic variants becomes challenging in tumor samples. The existing tumor-only genomic analysis methods either suffer from limited performance or insufficient interpretability due to an excess of features. Therefore, there is an urgent need for an alternative approach that can address these issues and have practical implications. Here, we presented OncoTOP, a computational method for genomic analysis without matched normal samples, which can accurately distinguish somatic mutations from germline variants. Reference sample analysis revealed a 0% false positive rate and 99.7% reproducibility for variant calling. Assessing 2864 tumor samples across 18 cancer types yielded a 99.8% overall positive percent agreement and a 99.9% positive predictive value. OncoTOP can also accurately detect clinically actionable variants and subclonal mutations associated with drug resistance. For the prediction of mutation origins, the positive percent agreement stood at 97.4% for predicting somatic mutations and 95.7% for germline mutations. High consistency of tumor mutational burden (TMB) was observed between the results generated by OncoTOP and tumor-normal paired analysis. In a cohort of 97 lung cancer patients treated with immunotherapy, TMB-high patients had prolonged PFS (P = .02), proving the reliability of our approach in estimating TMB to predict therapy response. Furthermore, microsatellite instability status showed a strong concordance (97%) with polymerase chain reaction results, and leukocyte antigens class I subtypes and homozygosity achieved an impressive concordance rate of 99.3% and 99.9% respectively, compared to its tumor-normal paired analysis. Thus, OncoTOP exhibited high reliability in variant calling, mutation origin prediction, and biomarker estimation. Its application will promise substantial advantages for clinical genomic testing.
Keywords: DNA sequencing; OncoTOP; bioinformatics; biomarker; cancer genomics.
© The Author(s) 2024. Published by Oxford University Press.