Background and purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.
Methods: This study included 37 participants: 16 iNPH, 10 Alzheimer's disease (AD), and 11 cognitively unimpaired (CU) controls. Anatomical and real-time (non-gated) PC images were acquired in a 3T Philips scanner. CSF flow was assessed at the foramen magnum, fourth ventricle, Sylvian fissure, lateral ventricle, and cerebral aqueduct. We calculated three CSF dynamics biomarkers: mean velocity amplitude, cardiac signal power, and respiratory signal power. Biomarkers from each location were evaluated for classifying iNPH versus AD and CU using support vector machine (SVM). A p-value of 0.05 or less was considered statistically significant.
Results: The velocity amplitude and cardiac signal power were significantly reduced in iNPH compared to CU (p < 0.005) and AD (p < 0.05) at the lateral ventricle. The SVM model using biomarkers from the lateral ventricle performed significantly better at classifying iNPH than the other locations in terms of accuracy (p < 0.005) and diagnostic odds ratio (p < 0.05).
Conclusion: Evaluation of CSF movement beyond the cerebral aqueduct may aid in identifying patients with and understanding the pathophysiology of iNPH.
Keywords: Alzheimer's disease; CSF dynamics disorders; normal pressure hydrocephalus; phase‐contrast MRI.
© 2024 The Author(s). Journal of Neuroimaging published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging.