Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume. Diverse antigens, mRNAs, neurotransmitters, and post-translational modifications are well-preserved and simultaneously visualized. INSIHGT also allows multi-round, highly multiplexed 3D molecular probing and is compatible with downstream traditional histology and nucleic acid sequencing. With INSIHGT, we map undescribed podocyte-to-parietal epithelial cell microfilaments in mouse glomeruli and neurofilament-intensive inclusion bodies in the human cerebellum, and identify NPY-proximal cell types defined by spatial morpho-proteomics in mouse hypothalamus. We anticipate that INSIHGT can form the foundations for 3D spatial multi-omics technology development and holistic systems biology studies.
© 2024. The Author(s).