The phytohormone jasmonates (JAs) regulate plant growth and defense responses. The reproductive organs of flowers are devastated by insect herbivores. However, the molecular mechanisms of floral defense remain largely unknown. Here, we found that the Arabidopsis JA receptor CORONATINE INSENSITIVE1 (COI1) and its substrates JA ZIM-domain (JAZ) repressors, and the mediator subunit MEDIATOR25-based MED25-MYC-MYB (MMM) complexes, including MYC2/3/4/5 and MYB28/29/76, mediated floral defense against the insects Helicoverpa armigera, Spodoptera exigua, and Spodoptera frugiperda. The flower-specific IIIa bHLH factors ABORTED MICROSPORES (AMS) and DYSFUNCTIONAL TAPETUM 1 (DYT1) were JAZ-interaction proteins. They interacted with members of the MMM complexes, inhibited the transcriptional activity of MYC2 and MYB28, and repressed floral defense against insects. AMS and DYT1 recruited the flower-specific MYB21/24, and these MYBs interacted with members of MMM complexes, inhibited the MYC2-MYB28 function, and suppressed floral defense against insects. Our study revealed that the JA-COI1-JAZ-MMM pathway mediated flower defense, and the AMS/DYT1-MYB21/24 module antagonized the MMM complexes to repress floral defense against insects.
Keywords: JAZs; floral defense; jasmonate; the AMS/DYT1–MYB module; the MED25–MYC–MYB complexes.
© 2024 Institute of Botany, Chinese Academy of Sciences.