Graphene aerogels (GAs) with engineered architectures are a promising material for applications ranging from filtration to energy storage/conversion. However, current preparation approaches involve the combination of multiple intrinsically-different methodologies to achieve graphene-synthesis and architecture-engineering, complicating the entire procedure. Here, a novel approach to prepare GAs with engineered architectures based on the laser-upcycling of protein biowaste, hemoglobin, is introduced. Laser scanning achieves graphene-synthesis concurrently with architecture-engineering through the localized graphitization of hemoglobin along the laser-scan path, enabling the direct preparation of engineered GAs. The laser-upcycled GAs are uniquely decorated with fibrous graphitic structures, which significantly improves the surface area. Such structural formation is attributable to the inherent iron content of hemoglobin which leads to the formation of iron-based nanoparticles that catalyze the formation of nano-structured graphene. By leveraging the high electrical conductivity and unique structural morphology, the laser-upcycled GAs are applied as electrodes of symmetrical 3D supercapacitors. The fabricated supercapacitors exhibited a high specific capacitance (≈54.9 F g-1) and excellent cycle stability (≈94% retention), attributable to the laser-engineered architecture facilitating ion diffusion even for thick electrodes. Not only does this study provide a novel approach to prepare GAs with engineered architectures but showcases the potential of laser-upcycling in preparing advanced functional materials for future devices.
Keywords: graphene aerogels; laser‐based additive manufacturing; laser‐induced graphitization; powder bed fusion; supercapacitors.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.