For the medical diagnosis of sepsis, it is crucial to differentiate infectious inflammation from noninfectious symptoms to prevent acute aggravation. Herein, a diagnosis for early stage sepsis was performed using LPC 16:0 and total phospholipids as small molecular biomarkers. The measurement of LPC 16:0 was conducted using a parylene matrix chip, which was developed to effectively detect small molecules in laser desorption/ionization mass spectrometry (LDI-MS). Meanwhile, the total phospholipid level was measured using colorimetry, following an enzymatic assay. Next, the two biomarkers were analyzed in serum samples from healthy volunteers, systemic inflammatory response syndrome (SIRS) patients, and sepsis patients. Diagnostic criteria were established based on the biomarker intensities observed in each patient group. After the measurements were conducted, the interference in phospholipid analysis due to hemoglobin contamination was considered. Additionally, the analytical parameters from biomarker detection were statistically interpreted and compared with those of conventional diagnostic standards. Finally, the diagnostic performance of each biomarker was evaluated by analyzing the biomarker levels between patient groups and examining their overlapping extents in box plots to distinguish sepsis from noninfectious inflammatory symptoms.
Keywords: colorimetry; laser desorption/ionization time-of-flight mass spectrometry; lysophosphatidylcholine; parylene matrix chip; phospholipid; sepsis.