Role of alanine aminotransferase in crop resilience to climate change: a critical review

Physiol Mol Biol Plants. 2024 Dec;30(12):1935-1953. doi: 10.1007/s12298-024-01540-8. Epub 2024 Dec 11.

Abstract

Alanine aminotransferase (AlaAT) is a crucial enzyme present in various isoforms. It is playing vital role in both humans and plants. This concise review focuses on the role of AlaAT in plants, particularly on preharvest sprouting, hypoxia, nitrogen use efficiency, abiotic and biotic stress tolerance. The molecular genetics of AlaAT, including gene identification and the impact on plant yield and its physiology, is discussed. Notably, the major dormancy gene Qsd1/SD1 governing AlaAT synthesis has been characterized and cloned in various crops. This review emphasizes the current understanding of AlaAT and its influence on plants, covering mechanisms regulating preharvest sprouting, hypoxia, drought tolerance, salt tolerance, biotic resistance and nitrogen use efficiency. Identifying a protein with multidimensional roles in crop plants is very important. Modern biotechnological approaches can alter such candidate gene/protein for superior varieties development. Overall, the review gives an understanding of the uncovered area of AlaAT and the challenge of climatic change triggers in plants. In the future, the potential of genome editing in AlaAT through enhancer insertion and rapid stabilization through speed breeding will impart resilience to crop plants against climate change.

Keywords: Biotic resistance; Climate change; Enhancer insertion; Genome editing; Hypoxia; Nitrogen use efficiency; Pre-harvest sprouting.

Publication types

  • Review