TCSRNet: a lightweight tobacco leaf curing stage recognition network model

Front Plant Sci. 2024 Dec 18:15:1474731. doi: 10.3389/fpls.2024.1474731. eCollection 2024.

Abstract

Due to the constraints of the tobacco leaf curing environment and computational resources, current image classification models struggle to balance recognition accuracy and computational efficiency, making practical deployment challenging. To address this issue, this study proposes the development of a lightweight classification network model for recognizing tobacco leaf curing stages (TCSRNet). Firstly, the model utilizes an Inception structure with parallel convolutional branches to capture features at different receptive fields, thereby better adapting to the appearance variations of tobacco leaves at different curing stages. Secondly, the incorporation of Ghost modules significantly reduces the model's computational complexity and parameter count through parameter sharing, enabling efficient recognition of tobacco leaf curing stages. Lastly, the design of the Multi-scale Adaptive Attention Module (MAAM) enhances the model's perception of key visual information in images, emphasizing distinctive features such as leaf texture and color, which further improves the model's accuracy and robustness. On the constructed tobacco leaf curing stage dataset (with color images sized 224×224 pixels), TCSRNet achieves a classification accuracy of 90.35% with 158.136 MFLOPs and 1.749M parameters. Compared to models such as ResNet34, GhostNet, ShuffleNetV2×1.5, EfficientNet-b0, MobileViT-xs, MobileNetV2, MobileNetV3-large, and MobileNetV3-small, TCSRNet demonstrates superior performance in terms of accuracy, FLOPs, and parameter count. Furthermore, when evaluated on the public V2 Plant Seedlings dataset, TCSRNet maintains an impressive accuracy of 97.15% compared to other advanced network models. This research advances the development of lightweight models for recognizing tobacco leaf curing stages, providing theoretical support for smart tobacco curing technologies and injecting new momentum into the digital transformation of the tobacco industry.

Keywords: attention mechanism; image classification; lightweight network model; smart agriculture; tobacco leaf curing stage.

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (ASTIP-TRIC03); Key project of China National Tobacco Corporation (110202102007); Science and technology project of Jiangxi Province of China National Tobacco Corporation (202201011).