Designing and optimizing photocatalysts to maximize the use of sunlight and achieve fast charge transport remains a goal of photocatalysis technology. Herein, a full-spectrum-response Bi3O4Br:Er3+@Bi2O3- x core-shell S-scheme heterojunction is designed with [Bi─O] tetrahedral sharing using upconversion (UC) functionality, photothermal effects, and interfacial engineering. The UC function of Er3+ and plasmon resonance effect of Bi2O3- x greatly improves the utilization of sunlight. The equivalent layer structure of Bi3O4Br and Bi2O3- x facilitates the construction of high-quality S-scheme heterojunction interfaces with close atomic-level contact obtained from the [Bi─O] tetrahedral sharing and the resulting Bi3O4Br:Er3+@Bi2O3- x core-shell morphology, enabled efficient charge transfer. Furthermore, localized temperature increase, induced by photothermal effects, enhanced the chemical reaction kinetics. Benefiting from the distinctive construction, the Bi3O4Br:Er3+@Bi2O3- x heterojunctions exhibit excellent performance in the photocatalytic degradation of bisphenol A that is 2.40 times and 4.98 times greater than that of Bi3O4Br:Er3+ alone under full-spectrum light irradiation and near-infrared light irradiation, respectively. This work offers an innovative perspective for the design and fabrication of full-spectrum-response S-scheme heterojunction photocatalysts with efficient solar energy utilization based on high quality interfaces, UC functionality, and the photothermal effect.
Keywords: Bi3O4Br:Er3+@Bi2O3‐x; S‐scheme heterojunctions; [Bi─O] tetrahedral sharing; full‐spectrum‐response; photothermal effect.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.