Recent advancements in single-cell spatial proteomics have revolutionized our ability to elucidate cellular signaling networks and their implications in health and disease. This review examines these cutting-edge technologies, focusing on mass spectrometry (MS) imaging and multiplexed immunofluorescence (mIF). Such approaches allow high-resolution protein profiling at the single-cell level, revealing intricate cellular heterogeneity, spatial organization, and protein functions within their native cellular contexts. MS imaging techniques offer unprecedented high-dimensional resolution and provide detailed insights into their subcellular protein localization and abundance. mIF enables rapid and high-throughput protein profiling, enhancing its accessibility for diverse research and clinical applications. This review assesses the current challenges associated with these methodologies and also discusses the potential solutions to overcome these obstacles. The integration of spatial proteomics with other systems biology approaches holds great promise for enhancing our understanding of complex biological systems. It could also lead to significant advancements in molecular diagnostics and personalized treatment strategies.
©The Author(s) 2024. Open Access. This article is licensed under a Creative Commons CC-BY International License.