Advancing flexible electronics enables timely smart health management and diagnostic interventions. However, current health electronics typically rely on replaceable batteries or external power sources, requiring direct contact with the human skin or organs. This setup often results in rigid and bulky devices, reducing user comfort during long-term use. Flexible biomechanical energy harvesting technology, based on triboelectric or piezoelectric strategies, offers a promising approach for continuous and comfortable smart health applications, providing a sustainable power supply and self-powered sensing. This review systematically examines biomechanical energy sources around the human body, explores various energy harvesting mechanisms and their applications in smart health, and concludes with insights and future perspectives in this field.