Convergent Protocols for Computing Protein-Ligand Interaction Energies Using Fragment-Based Quantum Chemistry

J Chem Theory Comput. 2025 Jan 2. doi: 10.1021/acs.jctc.4c01429. Online ahead of print.

Abstract

Fragment-based quantum chemistry methods offer a means to sidestep the steep nonlinear scaling of electronic structure calculations so that large molecular systems can be investigated using high-level methods. Here, we use fragmentation to compute protein-ligand interaction energies in systems with several thousand atoms, using a new software platform for managing fragment-based calculations that implements a screened many-body expansion. Convergence tests using a minimal-basis semiempirical method (HF-3c) indicate that two-body calculations, with single-residue fragments and simple hydrogen caps, are sufficient to reproduce interaction energies obtained using conventional supramolecular electronic structure calculations, to within 1 kcal/mol at about 1% of the computational cost. We also demonstrate that the HF-3c results are illustrative of trends obtained with density functional theory in basis sets up to augmented quadruple-ζ quality. Strategic deployment of fragmentation facilitates the use of converged biomolecular model systems alongside high-quality electronic structure methods and basis sets, bringing ab initio quantum chemistry to systems of hitherto unimaginable size. This will be useful for generation of high-quality training data for machine learning applications.