Unraveling the mechanism of microRNA-134 in colon cancer progression: Targeting KRAS and PIK3CA for cell cycle control and histone deacetylase regulation

Exp Cell Res. 2024 Dec 31;444(2):114385. doi: 10.1016/j.yexcr.2024.114385. Online ahead of print.

Abstract

Colon cancer is the leading cause of cancer-related deaths worldwide. MicroRNAs (miRNAs) are key regulators of gene expression, often dysregulated in colon cancer. This study aims to elucidate the therapeutic role of miR-134-5p as a tumor suppressor miRNA in colon cancer cells. We analyzed miRNA expression profiles in primary and metastatic colon cancer cells. The clinical significance of miR-134-5p was evaluated using the TCGA database. Bioinformatics tools (HADDOCK) predicted miRNA-mRNA interactions and the molecular docking of miRNA-mRNA-AGO2 complexes. Luciferase reporter assays, cell proliferation, immunofluorescence, colony forming unit assays, and qRT-PCR analysis assessed miR-134-5p effects on KRAS, PIK3CA, and downstream signaling pathways in primary and metastatic colon cancer cells. miR-134-5p was downregulated in colon cancer cells. Bioinformatics analysis suggested KRAS, PIK3CA, EGFR, and HDAC5 as potential targets. HADDOCK analysis revealed strong binding affinity and structural stability between KRAS, PIK3CA, miR-134-5p, and AGO2. Gene-reporter assays confirmed miR-134-5p-mediated degradation of KRAS and PIK3CA. miR-134-5p transfection reduced KRAS and PI3K protein levels, suppressed EGFR/RTK signaling and its downstream targets, and inhibited HDAC expression, ultimately reducing colon cancer cell proliferation. The results of this study confirm that miR-134-5p acts as a potential tumor suppressor miRNA in colon cancer cells by inhibiting KRAS and PI3K expression through AGO2-mediated gene silencing. It deregulates downstream EGFR signaling and HDACs, thereby reducing colon cancer cell proliferation. These findings highlight miR-134-5p as a promising therapeutic target for miRNA-mediated anticancer therapy.

Keywords: Colon cancer; Histone deacetylases; KRAS; PI3K; miR-134-5p; miRNA-mRNA docking.