The global atmospheric greenhouse gas (GHG) accumulation trajectory has been subjected to fluctuations in the context of the COVID-19 pandemic. Country-level virus prevalence and geography conditions added complexity to understanding atmospheric GHG accumulation sensitivities in terms of the growth rate. Here, extensive data sets were comprehensively analyzed to capture historical and projected fate of atmospheric GHG concentrations. Although a temporary slowdown was observed during the lockdown, global atmospheric GHG growing rates exhibited a sharp rebound during the early economic recovery after COVID-19, which would threaten climate goals without proactive measures. Despite this consistent global trend, various countries demonstrated differential relative changes in growth rates, representing their specific responses to the pandemic crisis. After systematic consideration of socio-economic and demographic factors and employment of optimal regression models, transportation and industry variables emerged as the strongest predictors for country-specific GHG accumulation sensitivities during lockdown and recovery phases, respectively. Addressing global health and climate change issues would necessitate sustainable government actions and economic decisions in anticipation of future pandemic-related events.
Keywords: atmospheric greenhouse gas concentration; driving forces; growth rate; machine learning; pandemic-related periods.