A Decoupling Method for Multimode Flexible Capacitive Sensors to Decouple Spatial Forces and Dynamic Humidity

ACS Appl Mater Interfaces. 2025 Jan 15;17(2):3548-3559. doi: 10.1021/acsami.4c14990. Epub 2025 Jan 2.

Abstract

This paper focuses on a four-capacitor flexible sensor composed of two electrode materials; also, the decoupling method and sensing performance for multimodal sensing of spatial forces and dynamic humidity are described. In previous work, decoupling of multimode sensors is mostly done by monitoring the types of signals, numerical differences of the same signal, and stacking multiple parameter-sensitive materials. This paper mainly uses the different characteristics of the two electrode materials; in the simulation and experiment of humidity, the moisture-sensitive electrode quickly wets from the outside to the inside and expands, and the contact angle quickly decreases from 58.5 to 3.7° within 12.04 s, while the copper electrode has no obvious change; in the simulation and experiment of force, the capacitance value of the capacitor composed of the two electrodes changes steadily with the magnitude of the force. That is, the moisture-sensitive electrode can respond to both force and humidity, while the copper electrode responds only to force. So, we use the copper electrode to decouple the spatial force information and calculate the capacitance value of the moisture-sensitive electrode under the influence of only spatial force. The capacitance value of the moisture-sensitive electrode only affected by humidity can be obtained by the difference between the measured capacitance value and the capacitance value under the influence of only spatial force, and then, the humidity value can be obtained according to the material properties. When a single physical quantity changes, the built-in test platform of the experiment verifies that the decoupling accuracy of the force in the dual-mode sensor is as high as 0.95, and the decoupling accuracy of humidity is as high as 0.97. When the two physical quantities change synchronously, the decoupling accuracy of the force is relatively uniformly distributed within the range, and the decoupling accuracy of humidity can reach as high as 0.99 within the range of 31%RH-56%RH. As a humidity sensor, the sensitivity gradually decreases as the humidity increases. During the repeated changes from low humidity to high humidity, the dynamic characteristics, stability, and repeatability have very good performance. The repetition rate is 97.64%, the response time is 11.3 s, the recovery time is 6.8 s, and the capacitance value for 24 days remains basically unchanged. All of these provide some insight into the application of multimode sensors.

Keywords: capacitive sensor; decoupling method; dynamic humidity; multimodal sensors; spatial force.