Hardware implementation of reconfigurable and nonvolatile photoresponsivity is essential for advancing in-sensor computing for machine vision applications. However, existing reconfigurable photoresponsivity essentially depends on the photovoltaic effect of p-n junctions, which photoelectric efficiency is constrained by Shockley-Queisser limit and hinders the achievement of high-performance nonvolatile photoresponsivity. Here, we employ bulk photovoltaic effect of rhombohedral (3R) stacked/interlayer sliding tungsten disulfide (WS2) to surpass this limit and realize highly reconfigurable, nonvolatile photoresponsivity with a retinomorphic photovoltaic device. The device is composed of graphene/3R-WS2/graphene all van der Waals layered structure, demonstrating a wide range of nonvolatile reconfigurable photoresponsivity from positive to negative ( ± 0.92 A W-1) modulated by the polarization of 3R-WS2. Further, we integrate this system with a convolutional neural network to achieve high-accuracy (100%) color image recognition at σ = 0.3 noise level within six epochs. Our findings highlight the transformative potential of bulk photovoltaic effect-based devices for efficient machine vision systems.
© 2024. The Author(s).