Deep learning analysis of electrocardiography (ECG) may predict cardiovascular outcomes. We present a novel multi-task deep learning model, the ECG-MACE, which predicts the one-year first-ever major adverse cardiovascular events (MACE) using 2,821,889 standard 12-lead ECGs, including training (n = 984,895), validation (n = 422,061), and test (n = 1,414,933) sets, from Chang Gung Memorial Hospital database in Taiwan. Data from another independent medical center (n = 113,224) was retrieved for external validation. The model's performance achieves AUROCs of 0.90 for heart failure (HF), 0.85 for myocardial infarction (MI), 0.76 for ischemic stroke (IS), and 0.89 for mortality. Furthermore, it outperforms the Framingham risk score at 5-year MACEs and 10-year mortality prediction. Over 10-year follow-ups, the model-predicted-positive group exhibits significantly higher MACE incidences than the model-predicted-negative group (relative incidence ratio: HF: 15.28; MI: 7.87; IS: 4.74; mortality: 13.18). Using solely ECGs, ECG-MACE effectively predicts one-year events and exhibits long-term anticipation. It provides potential applications in preventive medicine.
© 2025. The Author(s).