Colony expansion is important for establishing territories. It is unclear to what extent bacteria can maintain colony expansion under nutrient limitation. Here, we found that Escherichia coli biofilms could maintain steady expansion for an extended period of time under severe phosphorus limitation. The expansion was supported by reactive-oxygen-species-mediated cell death within the biofilm. The cell death was spatially separated from the region of growth, resulting in cross-regional recycling of phosphorus from the lysed bacteria. The increase in cell death and the steady growth after phosphorus removal was community specific and was not observed in planktonic bacteria. Lastly, phosphorus had a unique role in the cell-death-mediated nutrient recycling, as the phenomenon described above was not observed under carbon or nitrogen starvation. Our work reveals how bacterial communities use spatially coordinated metabolism to cope with phosphorus limitation, which promotes robust expansion of the bacteria in fluctuating environments.
© 2025. The Author(s), under exclusive licence to Springer Nature America, Inc.