Semantic segmentation of high-resolution images from remote sensing is crucial across various sectors. However, due to limitations in computational resources and the complexity of network architectures, many sophisticated semantic segmentation models struggle with efficiency in real-world applications, leading to an interest in developing lightweight model like borders. These models often employ a dual-branch structure, which balances processing speed and performance effectively. Yet, this design typically falls short in leveraging shallow structural information to enrich the dual branches with comprehensive multiscale data. Additionally, the lightweight components struggle to capture the global contextual details of feature sets efficiently. When compared to state-of-the-art models, lightweight semantic segmentation models usually exhibit performance gaps. To address these issues, we introduce a novel approach that incorporates a deep-shallow interaction mechanism with an attention module to improve water body segmentation efficiency. This method spatially adjusts feature representations to better identify water-related data, utilizing a U-Net frame work to enhance the accuracy of edge detection in water zones by providing more precise local positioning information. The attention mechanism processes and merges low and high-level data separately in different dimensions, allowing for the effective distinction of water areas from their surroundings by blending spatial attributes with in-depth context insights. Experimental outcomes demonstrate a remarkable 95% accuracy, showcasing the proposed method's superiority over existing models.
Keywords: Attention module; Deep learning; Neural network; Satellite images; Semantic segmentation; U-Net.
© 2024. The Author(s).