Flexible sensing offers real-time force monitoring, presenting a versatile and effective solution for dexterous manipulation, healthcare, environmental exploration, and perception of physical properties. Nonetheless, a limitation of many existing flexible force sensors stems from their isotropic structure or material properties, preventing them from simultaneously detecting both the direction and magnitude of the applied force. Herein, a high-performance 3D force sensor based on orthogonal multimodal sensing, the cancellation principle, and the strain effect is proposed. Finite element analysis further reveals the decoupling and anti-interference mechanisms of the innovative capacitor-resistance dual-mode sensing based on a solid mechanics and electrostatic multiphysics model. The sensor demonstrates the ability to measure both the magnitude and direction of normal and shear forces in any combination using the proposed decoupling and reconstruction algorithms, showing the potential for accurately reconstructing the posture of objects.
Keywords: 3D force; flexible sensor; multimodal sensing; pose reconstruction; strain effect.
© 2025 Wiley‐VCH GmbH.