Rational design of stable carbon nitride monolayer membranes for highly controllable CO2 capture and separation from CH4 and C2H2

Nanoscale. 2025 Jan 3. doi: 10.1039/d4nr04590d. Online ahead of print.

Abstract

CO2 capture and separation from natural and fuel gas are important industrial issues that refer to the control of CO2 emissions and the purification of target gases. Here, a novel non-planar g-C12N8 monolayer that could be synthesized via the supramolecular self-assembly strategy was identified using DFT calculations. The cohesive energy, phonon spectrum, BOMD, and mechanical stability criteria confirm the stability of the g-C12N8 monolayer. Our DFT calculations and MD simulations designate the g-C12N8 monolayer to perform as a superior CO2 separation membrane from CH4 and C2H2 gas owing to the high CO2 permeability and selectivity. Specifically, the CO2 permeability ranges from 1.21 × 107 to 1.53 × 107 GPU, while the selectivity of CO2/CH4 and CO2/C2H2 is 3.03 × 103 and 3.10 × 102 at 300 K, respectively, much higher than the Robeson upper bound and most of the reported 2D membranes, and even at high temperatures, the g-C12N8 monolayer-based CO2 separation membranes could operate with high performance. Further, at room temperature, the permeated CO2 gas can adsorb on the g-C12N8 surface with moderate adsorption energy and high capacity. These results indicate that the g-C12N8 membrane exhibits high performance for controlling CO2 capture and separation, which inevitably injects a new alternative of novel 2D membranes for CO2 separation and capture from CH4 and C2H2 in light of further experimental and theoretical research.