Anisotropic Raman Scattering and Lattice Orientation Identification of 2M-WS2

Nano Lett. 2025 Jan 3. doi: 10.1021/acs.nanolett.4c04960. Online ahead of print.

Abstract

Anisotropic materials with low symmetries hold significant promise for next-generation electronic and quantum devices. 2M-WS2, which is a candidate for topological superconductivity, has garnered considerable interest. However, a comprehensive understanding of how its anisotropic features contribute to unconventional superconductivity, along with a simple, reliable method to identify its crystal orientation, remains elusive. Here, we combine theoretical and experimental approaches to investigate angle- and polarization-dependent anisotropic Raman modes of 2M-WS2. Through first-principles calculations, we predict and analyze the phonon dispersion and lattice vibrations of all Raman modes in 2M-WS2. We establish a direct correlation between their anisotropic Raman spectra and high-resolution transmission electron microscopy images. Finally, we demonstrate that anisotropic Raman spectroscopy can accurately determine the crystal orientation and twist angle between two stacked 2M-WS2 layers. Our findings provide insights into the electron-phonon coupling and anisotropic properties of 2M-WS2, paving the way for the use of anisotropic materials in advanced electronic and quantum devices.

Keywords: 2M-WS2; anisotropy; lattice orientation; polarized Raman spectroscopy; twist angle.