Design and Synthesis of Triazine-Based Hydrogel for Combined Targeted Doxorubicin Delivery and PI3K Inhibition

ACS Biomater Sci Eng. 2025 Jan 3. doi: 10.1021/acsbiomaterials.4c01291. Online ahead of print.

Abstract

Melanoma, an aggressive skin cancer originating from melanocytes, presents substantial challenges due to its high metastatic potential and resistance to conventional therapies. Hydrogels, 3D networks of hydrophilic polymers with high water-retention capacities, offer significant promise for controlled drug delivery applications. In this study, we report the synthesis and characterization of hydrogelators based on the triazine molecular scaffold, which self-assemble into fibrous networks conducive to hydrogel formation. Rheological analysis confirmed their hydrogelation properties, while microscopic techniques, including FE-SEM and FEG-TEM, provided insights into their morphological networks. The drug delivery capability of these hydrogelators was evaluated using doxorubicin, a widely employed anticancer agent, demonstrating enhanced biocompatibility and reduced side effects compared to free doxorubicin. Additionally, the hydrogelators exhibited inhibitory activity against phosphoinositide 3-kinase (PI3K), a key enzyme frequently mutated in cancer and also involved in melanoma progression. The dual functionality of this delivery system─controlled drug release and PI3K inhibition─highlights the potential of triazine-based hydrogelators as innovative therapeutic platforms for melanoma treatment.

Keywords: apoptosis; drug encapsulation; melanoma; pH-responsive release.