High-performance triboelectric nanogenerator employing a swing-induced counter-rotating motion mechanism and a dual potential energy storage and release strategy for wave energy harvesting

Mater Horiz. 2025 Jan 3. doi: 10.1039/d4mh01491j. Online ahead of print.

Abstract

The triboelectric nanogenerator (TENG) has been proved to be a very promising marine energy harvesting technology. Herein, we have developed a high-performance triboelectric nanogenerator (SD-TENG) with low friction, high durability, swing-induced counter-rotating motion mechanism (SICRMM) and dual potential energy storage and release strategy (DPESRS). The unique counter-rotating motion mechanism enabled SD-TENG to convert the external linear and swing motion energy into rotation motion energy of the inner and outer cylinders, and then converted it into a controllable power output. Benefitting from the SICRMM and DPESRS, the short-circuit current of SD-TENG reached 51.2 μA, which was more than 2 times higher than the previously reported work. With an increase in the external excitation, SD-TENG automatically switched between intermittent rotation mode and continuous rotation mode. Its peak power density reached 11.20 W m-3 and 20.21 W m-3 in two rotation modes, respectively. The non-contact working mode greatly improved the durability of SD-TENG, and it maintained 97.08% of the electrical output even after 120 000 cycles of continuous work. SD-TENG has potential to supply power for wireless transmission modules, realize wireless real-time monitoring of temperature and humidity, and successfully demonstrate some intelligent ocean applications.