Probing Berry Phase Effect in Topological Surface States

Phys Rev Lett. 2024 Dec 13;133(24):243801. doi: 10.1103/PhysRevLett.133.243801.

Abstract

We have observed the Berry phase effect associated with interband coherence in topological surface states (TSSs) using two-color high-harmonic spectroscopy. This Berry phase accumulates along the evolution path of strong field-driven electron-hole quasiparticles in electronic bands with strong spin-orbit coupling. By introducing a secondary weak field, we perturb the evolution of Dirac fermions in TSSs and thus provide access to the Berry phase. We observe a significant shift in the oscillation phase of the even-order harmonics from the spectral interferogram. We reveal that such a modulation feature is linked to the geometric phase acquired in the nonperturbative dynamics of TSSs. Furthermore, we show that the overwhelming Berry phase effect can significantly deform the quantum paths of electron-hole pairs, thus enhancing the ability to harness electron spin using lightwaves in quantum materials with strong spin-orbit interactions.