The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.A@FeONPs were characterized using various approaches like UVs, FTIR, SEM, EDX, and DLS. The mean crystallite size was calculated to be ~ 21.48 nm using the Debye-Scherrer equation. Further, various in vitro biological assays were performed to analyze the therapeutic potentials of FeONPs. 2,2-Diphenyl-1-picrylhydrazy (DPPH) antioxidant activity was performed to reveal the DPPH radical scavenging potential of P.A@FeONPs and was calculated as 72%. Similarly, the total reducing power was determined as 65.45 ± 1.77%. In addition, P.A@FeONPs exhibited a significant total antioxidant capacity of 87 ± 4.8%. Antibacterial and antifungal assays were performed using the disc diffusion method. Among the different bacterial strains accession (EFB-10-2023 M.B), Rhodococcus jostii has shown the highest zone of inhibition (23.9 mm at 1000 μg/mL), while Escherichia coli displayed a 22.65 mm zone of inhibition at (1000 μg/mL). Similarly, Aspergillus niger exhibited a substantial zone of inhibition (28.75 mm). A brine shrimp cytotoxicity assay revealed the cytotoxicity potential (LC50 244.92 μg/mL). P.A@FeONPs were also tested against red blood cells, HEK-293, and VERO cell lines (< 200 μg/mL) to validate their biocompatibility. An alpha-amylase inhibition assay demonstrated 68.66% inhibition and substantial cytotoxicity against Hep-2 liver cancer cells (IC50 100 μg/mL). In conclusion, P.A@FeONPs have shown significant bioactivities. In the future, we recommend other biological and catalytic activities using different animal models to explore its potential further.
Keywords: Parietaria alsinifolia; Antibacterial; Anticancer; Antifungal; Antioxidant; Biocompatibility; Iron oxide nanoparticles; Nanomedicine.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.