Aging in a weighted ensemble of excitable and self-oscillatory neurons: The role of pairwise and higher-order interactions

Chaos. 2025 Jan 1;35(1):011101. doi: 10.1063/5.0247769.

Abstract

We investigate the aging transition in networks of excitable and self-oscillatory units as the fraction of inherently excitable units increases. Two network topologies are considered: a scale-free network with weighted pairwise interactions and a two-dimensional simplicial complex with weighted scale-free pairwise and triadic interactions. Without triadic interactions, the aging transition from collective oscillations to oscillation death (inhomogeneous stationary states) can occur either suddenly or through an intermediate state of partial oscillation. However, when triadic interactions are present, the network becomes less resilient, and the transition occurs without partial oscillation at any coupling strength. Furthermore, we observe the presence of inhomogeneous steady states within the complete oscillation death regime, regardless of the network interaction models.