Applying AI to Structured Real-World Data for Pharmacovigilance Purposes: Scoping Review

J Med Internet Res. 2024 Dec 30:26:e57824. doi: 10.2196/57824.

Abstract

Background: Artificial intelligence (AI) applied to real-world data (RWD; eg, electronic health care records) has been identified as a potentially promising technical paradigm for the pharmacovigilance field. There are several instances of AI approaches applied to RWD; however, most studies focus on unstructured RWD (conducting natural language processing on various data sources, eg, clinical notes, social media, and blogs). Hence, it is essential to investigate how AI is currently applied to structured RWD in pharmacovigilance and how new approaches could enrich the existing methodology.

Objective: This scoping review depicts the emerging use of AI on structured RWD for pharmacovigilance purposes to identify relevant trends and potential research gaps.

Methods: The scoping review methodology is based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology. We queried the MEDLINE database through the PubMed search engine. Relevant scientific manuscripts published from January 2010 to January 2024 were retrieved. The included studies were "mapped" against a set of evaluation criteria, including applied AI approaches, code availability, description of the data preprocessing pipeline, clinical validation of AI models, and implementation of trustworthy AI criteria following the guidelines of the FUTURE (Fairness, Universality, Traceability, Usability, Robustness, and Explainability)-AI initiative.

Results: The scoping review ultimately yielded 36 studies. There has been a significant increase in relevant studies after 2019. Most of the articles focused on adverse drug reaction detection procedures (23/36, 64%) for specific adverse effects. Furthermore, a substantial number of studies (34/36, 94%) used nonsymbolic AI approaches, emphasizing classification tasks. Random forest was the most popular machine learning approach identified in this review (17/36, 47%). The most common RWD sources used were electronic health care records (28/36, 78%). Typically, these data were not available in a widely acknowledged data model to facilitate interoperability, and they came from proprietary databases, limiting their availability for reproducing results. On the basis of the evaluation criteria classification, 10% (4/36) of the studies published their code in public registries, 16% (6/36) tested their AI models in clinical environments, and 36% (13/36) provided information about the data preprocessing pipeline. In addition, in terms of trustworthy AI, 89% (32/36) of the studies followed at least half of the trustworthy AI initiative guidelines. Finally, selection and confounding biases were the most common biases in the included studies.

Conclusions: AI, along with structured RWD, constitutes a promising line of work for drug safety and pharmacovigilance. However, in terms of AI, some approaches have not been examined extensively in this field (such as explainable AI and causal AI). Moreover, it would be helpful to have a data preprocessing protocol for RWD to support pharmacovigilance processes. Finally, because of personal data sensitivity, evaluation procedures have to be investigated further.

Keywords: artificial intelligence; drug safety; machine learning; pharmacovigilance; real-world data; scoping review.

Publication types

  • Review

MeSH terms

  • Artificial Intelligence*
  • Electronic Health Records
  • Humans
  • Natural Language Processing
  • Pharmacovigilance*