Ferrimagnetic Heusler tunnel junctions with fast spin-transfer torque switching enabled by low magnetization

Nat Nanotechnol. 2025 Jan 3. doi: 10.1038/s41565-024-01827-7. Online ahead of print.

Abstract

Magnetic random-access memory that uses magnetic tunnel junction memory cells is a high-performance, non-volatile memory technology that goes beyond traditional charge-based memories. Today, its speed is limited by the high magnetization of the memory storage layer. Here we prepare magnetic tunnel junction memory devices with a low magnetization ferrimagnetic Heusler alloy Mn3Ge as the memory storage layer on technologically relevant amorphous substrates using a combination of a nitride seed layer and a chemical templating layer. We switch the magnetic state of the storage layer with nanosecond long write pulses at a reliable write error rate of 10-7 and detect a tunnelling magnetoresistance of 87% at ambient temperature. These results provide a strategy towards lower write switching currents using ferrimagnetic Heusler materials and, therefore, to the scaling of high-performance magnetic random-access memories beyond those nodes possible with ferromagnetic memory layers.