Deep learning-based pelvimetry in pelvic MRI volumes for pre-operative difficulty assessment of total mesorectal excision

Surg Endosc. 2025 Jan 3. doi: 10.1007/s00464-024-11485-4. Online ahead of print.

Abstract

Background: Specific pelvic bone dimensions have been identified as predictors of total mesorectal excision (TME) difficulty and outcomes. However, manual measurement of these dimensions (pelvimetry) is labor intensive and thus, anatomic criteria are not included in the pre-operative difficulty assessment. In this work, we propose an automated workflow for pelvimetry based on pre-operative magnetic resonance imaging (MRI) volumes.

Methods: We implement a deep learning-based framework to measure the predictive pelvic dimensions automatically. A 3D U-Net takes a sagittal T2-weighted MRI volume as input and determines five anatomic landmark locations: promontorium, S3-vertebrae, coccyx, dorsal, and cranial part of the os pubis. The landmarks are used to quantify the lengths of the pelvic inlet, outlet, depth, and the angle of the sacrum. For the development of the network, we used MRI volumes from 1707 patients acquired in eight TME centers. The automated landmark localization and pelvic dimensions measurements are assessed by comparison with manual annotation.

Results: A center-stratified fivefold cross-validation showed a mean landmark localization error of 5.6 mm. The inter-observer variation for manual annotation was 3.7 ± 8.4 mm. The automated dimension measurements had a Spearman correlation coefficient ranging between 0.7 and 0.87.

Conclusion: To our knowledge, this is the first study to automate pelvimetry in MRI volumes using deep learning. Our framework can measure the pelvic dimensions with high accuracy, enabling the extraction of metrics that facilitate a pre-operative difficulty assessment of the TME.

Keywords: Magnetic resonance imaging; Pelvimetry; Total mesorectal excision; U-Net.