Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M. micrantha to understand their function in flowering and adaptation mechanisms.
Results: By analysing the whole genome of M. micrantha, a total of 77 M. micrantha WRKY (MmWRKY) genes were identified. Based on phylogenetic relationships, sequence alignment, and structural domain diversity, the MmWRKY gene family was preliminarily classified into three major groups and five subgroups: Group I, Group II (II-a, II-b, II-c, II-d, II-e), and Group III. Expression profiles showed tissue-specific expression patterns, with many WRKY genes highly expressed in flowers, indicating potential roles in floral development. Real-time quantitative PCR confirmed that the selected 11 genes were highly expressed in floral tissues, supporting their functional significance in flowering.
Conclusion: In this study, 77 WRKY genes were identified in M micrantha, and their phylogenetic relationships, structural domains, and expression patterns across various tissues and organs were comprehensively analyzed. This work provides a foundation for future functional characterization of WRKY genes in M. micrantha, which may contribute to the development of more effective strategies to control its rapid spread.
Keywords: Mikania micrantha; Expression patterns; Expression profile; Genome-wide identification; WRKY.
© 2025. The Author(s).