To investigate the role of silent information regulator 6 (SIRT6) in regulating podocyte injury in diabetic nephropathy (DN) through autophagy mediated by Notch signaling pathway. A blank control group (group A), a diabetic nephropathy group (group B), and a Sirt6 intervention group (group C) were established. The group A cells were human normal glomerular podocyte cell lines (HGPCs) without any treatment. In group B, the cells were cultivated in glucose medium containing 30 mmol/L and a 10 µmol/L anti-LSirt6 antibody solution. Three sets of cells were tested for their capacity to proliferate via CCK8, for protein expression via Western blot, for associated mRNA expression levels via qPCR, and for cell migration and invasion ability via Transwell. The podocyte proliferation and migration activity in group B were reduced compared to group A, while these properties in group C were elevated compared to group B (DN). B Group is diabetes nephropathy. Compared with those in group B, the number of invading podocytes in group C were greater than those in group A, and the overall apoptosis rate in group C was lower than that in group B. The expression levels of apoptotic proteins in the podocytes in group C were greater than those in group B, and the bcl-2 level was lower than those in group B. The Notch1 and Jagged1 mRNA and protein levels in the podocytes in group B were greater than those in group A, whereas those in the podocytes in group C were lower than those in group B. Sirt6 can protect against podocyte autophagy injury in DN by regulating the Notch1 signaling pathway.
Keywords: Autophagy; Diabetes nephropathy; Information regulatory factor 6; Notch; Podocyte.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.