Osteoporosis, characterized by reduced bone mineral density and increased fracture risk, poses a significant health challenge, particularly for aging populations. Systemic treatments often lead to adverse side effects, emphasizing the need for localized solutions. This study introduces a 3D-printed polycaprolactone (PCL) scaffold embedded with strontium-substituted mesoporous bioactive glass nanoparticles (Sr-MBGNPs) and icariin (ICN) for the targeted regeneration of osteoporotic bone. The scaffold was characterized using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), ion release studies, and cellular assays, which confirmed its dual functionality in both enhancing osteoblast proliferation and differentiation and inhibiting osteoclastogenesis. The optimized Sr-MBGNP concentration ensured sustained ion release, superior hydrophilicity, and bioactivity without compromising scaffold integrity. Additionally, e-jet printing provided high precision and uniform pore sizes conducive to cellular activity. This novel scaffold platform demonstrates a promising localized treatment strategy, reducing systemic side effects while improving fixation stability. The innovative integration of Sr-MBGNPs and ICN highlights its potential to revolutionize osteoporosis therapy by promoting bone regeneration and mitigating bone resorption.
Keywords: 3D printing; Icariin; Mesoporous bioactive glass; Osteoblasts; Osteoclasts; Polycaprolactone; Strontium; Tissue engineering.
Copyright © 2024. Published by Elsevier B.V.