Cell-free hemoglobin released from hemolysis induces programmed cell death through iron overload and oxidative stress in grass carp (Ctenopharyngodon idella)

Fish Shellfish Immunol. 2025 Jan 2:157:110106. doi: 10.1016/j.fsi.2024.110106. Online ahead of print.

Abstract

Intravascular hemolysis releases hemoglobin (Hb) from red blood cells under specific conditions, yet the effect of hemolysis in aquaculture systems remain poorly understood. In this study, a continuous hemolysis model for grass carp was established by injection of phenylhydrazine (PHZ) to investigate the mechanistic impacts of sustained hemolysis. PHZ-induced hemolysis altered liver color, and subsequent hematoxylin and eosin staining revealed substantial Hb accumulation in the head kidney, accompanied by inflammatory cell infiltration and vacuolization in liver tissue. Quantitative real-time PCR and western blotting confirmed that PHZ treatment significantly upregulated Real-time fluorescence quantitative PCR and Western blot confirmed that PHZ treatment significantly up-regulated the expression of iron metabolism-related genes and proteins, including transferrin (Tf), ferritin, ferroportin 1 (FPN1), transferrin receptor 1 (TfR1), nuclear receptor coactivator 4 (NCOA4), divalent metal transporter 1 (DMT1), and six-transmembrane epithelial antigen of prostate 3 (STEAP3). Further investigation of PHZ-induced hemolysis effects on tissues showed that inflammation- and antioxidant enzyme-related genes in the liver and head kidney were significantly upregulated, indicating that hemolysis activated the antioxidant system and intensified inflammatory responses. Perls' staining revealed iron deposition in the head kidney and liver at ten and fourteen days post-PHZ injection. Moreover, β-galactosidase staining and transmission electron microscopy showed increased cellular senescence and mitochondrial damage, respectively, as a result of PHZ-induced hemolysis. In vitro assays with hemin treatment demonstrated increased Fe2+ content in CIK and L8824 cells, which induced oxidative stress, upregulated iron metabolism and inflammatory genes, and ultimately led to cell death. These findings suggest that excessive Hb release during sustained hemolysis leads to iron overload, elevates reactive oxygen species production, disrupts antioxidant balance, and ultimately causes cellular damage.

Keywords: Ctenopharyngodon idella; Hemoglobin; Iron overload; Oxidative damage.