The environmental impact of extracellular matrix preparation

FEBS J. 2025 Jan 5. doi: 10.1111/febs.17385. Online ahead of print.

Abstract

The extracellular matrix (ECM) is a network of proteins and other molecules that encase and support cells and tissues in the body. As clinical and biotechnological uses of ECM are expanding, it is essential to assess the environmental impact associated with its production. Due to high levels of customization, various laboratories employ distinct methods; therefore, this study evaluates three common protocols. Life cycle assessment (LCA) methodology has been developed to evaluate the environmental impacts of products produced through diverse processes. Despite its widespread application in the pharmaceutical industry, LCA has seldom been utilized to estimate the environmental effects of laboratory protocols. This Viewpoint applies LCA to assess the functionality and environmental impacts of ECM produced via P1, P2, and P3. The results of this assessment indicate that the protocol with the highest impact generates approximately 43 times more CO2-equivalent emissions (CO2 eq) than that with the lowest impact, while the ECM produced using the least impactful protocol demonstrates the highest biocompatibility. Additional environmental indicators such as eutrophication, photochemical oxidation, and acidification also vary among the tested protocols. This work underscores the need to factor environmental impact in the development of novel biomedical materials.

Keywords: biomedical technology; environmental impacts; extracellular matrix; life cycle assessment; protocols.