In situ labeling of pretargeted hyaluronan for PET/MR imaging of CD44+ tumors

Bioorg Chem. 2024 Dec 30:155:108110. doi: 10.1016/j.bioorg.2024.108110. Online ahead of print.

Abstract

Background: Tumor-specific molecular probe-based imaging strategies have shown great potential for tumor diagnosis. However, the sensitivity and contrast of imaging may interfere with the complex labeling process and degradation of tumor-specific imaging probes. We sought to adapt a pretargeting strategy and an in vivo bioorthogonal reaction to improve hyaluronan (HA)-based tumor multimodal imaging diagnosis.

Methods: Transcyclooctene-labeled HA (HA-TCO) and tetrazine-labeled NODA (NODA-Tz) were synthesized and purified. Probes Gd-NODA-Tz and [18F]AlF-NODA-Tz for magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging were prepared. The bioorthogonal reaction of HA-TCO with NODA-Tz and the stability of the products were confirmed and analyzed. CD44 + A549 tumor-bearing mice were injected with HA-TCO via the tail vein, followed by Gd-NODA-Tz or [18F]AlF-NODA-Tz administration half an hour later, and subsequently imaged by MR or PET. The images were analyzed and tumor uptake was quantified.

Results: HA-TCO efficiently bound to CD44-overexpressing A549 cells and selectively reacted with the Tz-imaging group. In vivo MR and PET images were obtained after probe injection and subsequent bioorthogonal labeling. The images showed a tumor mass with a high target background ratio (TBR) and clear boundaries.

Conclusion: In situ labeling of pretargeted HA-TCO enabled MRI and PET imaging of tumor tissues in mice with high sensitivity and improved TBR.

Keywords: Bioorthogonal chemistry; Hyaluronan; Magnetic resonance imaging; Positron emission tomography imaging; Pretargeting.