Diquat (DQ) is a pro-oxidant that generates free radicals in cells through redox reactions, leading to the induction of oxidative stress. During the processes of growth and reproduction, poultry are particularly vulnerable to oxidative stress. Selenium yeast (SeY) serves as an organic selenium source characterized by high activity and low toxicity, imparting antioxidant effects. The objective of this study was to assess the protective effects of SeY against DQ-induced oxidative stress in rooster testicles.The results demonstrated that SeY pretreatment mitigated DQ-induced oxidative damage in the testes. This mitigation encompassed the alleviation of inhibited spermatogenesis, reduced spermatogenic cell abundance, and the alleviation of decreased expression of genes StAR, P450scc, and 3β-HSD which related to testosterone synthesis. Specifically, SeY pretreatment counteracted DQ-induced oxidative stress by activating the Nrf2/HO-1 antioxidant signaling pathway, enhancing the activity of antioxidant enzymes such as catalase (CAT) and total superoxide dismutase (T-SOD), and reducing the concentration of malondialdehyde (MDA). Furthermore, SeY pretreatment attenuated DQ-induced spermatogonia apoptosis by modulating the expression of apoptosis-related genes and proteins, including Bax, Bcl-2, Caspase3, and NF-κB. Additionally, SeY restored the proliferative capacity of spermatogenic cells by promoting the expression of the proliferation-related protein Ki67. The aforementioned findings signify that SeY effectively safeguards the testes against DQ-induced damage through mechanisms involving the reduction of oxidative stress, inhibition of apoptosis, promotion of proliferation, and enhancing the expression of testosterone synthesis related genes. This study lays a solid theoretical foundation for future research aimed at safeguarding the reproductive health of male poultry exposed to agricultural pesticides.
Keywords: Apoptosis; Diquat; Oxidative stress; Reproductive performance; Rooster testicles; Selenium yeast.
Copyright © 2025 Elsevier B.V. All rights reserved.