Chitosan, as a natural and environmentally friendly material, has attracted significant attention in the field of water treatment. In this study, a Chitosan/poly (dimethyl diallyl ammonium chloride-co-acrylamide) composite hydrogel (CPDA hydrogel) featuring a semi-interpenetrating network structure was synthesized via free radical copolymerization for the removal of the anionic dye Congo Red (CR) from wastewater. SEM-EDS, FTIR, XPS, TG, Zeta potential, and mercury intrusion porosimetry (MIP) were employed to analyze the physical and chemical changes in the hydrogel before and after adsorption. The results revealed that the CPDA hydrogel can selectively adsorb anionic dyes through electrostatic interactions. The study on the adsorption performance of the CPDA hydrogel demonstrated its excellent swelling capacity and stable adsorption of Congo Red over a broad pH range of 4 to 10. Subsequently, the adsorption process of Congo Red followed the Pseudo-Second-Order kinetic model and the Hill isotherm model, suggesting that Congo Red may self-assemble into ribbon-like micelles for cooperative adsorption and achieving a maximum adsorption capacity of 1803.507 mg/g. Furthermore, the CPDA hydrogel exhibited outstanding reusability over six adsorption-desorption cycles. Thus, the prepared CPDA hydrogel shows great potential as a material for the selective removal of Congo Red from mixed dye solutions.
Keywords: Chitosan; Congo red; Ribbon-like micelles; Selective adsorption.
Copyright © 2025. Published by Elsevier B.V.