Crystal Lattice Analysis for 2D Nanomorphology Prediction of Phase-Separated Materials

J Am Chem Soc. 2025 Jan 5. doi: 10.1021/jacs.4c14964. Online ahead of print.

Abstract

Spontaneous phase separation of materials is a powerful strategy to generate highly defined 2D nanomorphologies with novel properties and functions. Exemplary are such morphologies in block copolymers or amphiphilic systems, whose formation can be well predicted based on parameters such as volume fraction and shape factor. In contrast, the formation of 2D nanomorphologies is currently unpredictable in materials perfectly defined at the molecular level, in which crystallinity plays a significant role. Here, we introduce a crystal lattice analysis to predict a priori the formation of 2D nanomorphologies from the crystalline units in phase-separated soft materials. We show that the formation of lamellar morphologies, their domain spacings, and thermal transition temperatures of such materials can be predicted using a straightforward crystal lattice analysis workflow. We envision this approach to facilitate the design and discovery of new materials with 2D nanomorphologies that are essential for next-generation electronic applications.