Identifying the cognitive state can help educators understand the evolving thought processes of learners, and it is important in promoting the development of higher-order thinking skills (HOTS). Cognitive neuroscience research identifies cognitive states by designing experimental tasks and recording electroencephalography (EEG) signals during task performance. However, most of the previous studies primarily concentrated on extracting features from individual channels in single-type tasks, ignoring the interconnection across channels. In this study, three learning activities (i.e., video watching activity, keyword extracting activity, and essay creating activity) were designed based on a revised Bloom's taxonomy and the Interactive-Constructive-Active-Passive framework and used with 31 college students. The EEG signals were recorded when they were engaged in these activities. First, whole-brain network temporal dynamics were characterized by EEG microstate sequence analysis. Such dynamic changes rely on learning activity and corresponding functional brain systems. Subsequently, phase locking value was used to construct synchrony-based functional brain networks. The network characteristics were extracted to be inputted into different machine learning classifiers: Support Vector Machine, K-Nearest Neighbour, Random Forest, and eXtreme Gradient Boosting (XGBoost). XGBoost showed superior performance in the classification of cognitive states, with an accuracy of 88.07%. Furthermore, SHapley Additive exPlanations (SHAP) was adopted to reveal the connections between different brain regions that contributed to the classification of cognitive state. SHAP analysis reveals that the connections in the frontal, temporal, and central regions are most important for the high cognitive state. Collectively, this study may provide further evidence for educators to design cognitive-guided instructional activities to enhance learners' HOTS.
Keywords: Cognitive state; Electroencephalography (EEG); Functional brain network; Phase locking value; SHapley Additive exPlanations (SHAP).
© The Author(s), under exclusive licence to Springer Nature B.V. 2025. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.