Design of 3D printed chip to improve sensitivity of platelet adhesion through reinjection: Effect of alcohol consumption on platelet adhesion

Biomicrofluidics. 2025 Jan 3;19(1):014101. doi: 10.1063/5.0237452. eCollection 2025 Jan.

Abstract

Monitoring platelet aggregation is crucial for predicting thrombotic diseases and identifying the risk of bleeding or resistance to antiplatelet drugs. This study developed a microfluidic device to measure platelet activation with high sensitivity. By controlling exposure time through repeated reinjections, the device enables the detection of subtle changes in platelet activity influenced by lifestyle factors, such as alcohol consumption. Using computational fluid dynamics simulations, the design was optimized to achieve moderate shear stresses and fabricated with 3D printing. Experimental results revealed that pillars biased to one side partially accelerate the flow and inhibit platelet adhesion. A distinct difference in platelet adhesion was clearly observed before and after alcohol consumption. Despite the high standard deviations in platelet adhesion area, hematocrit, and viscosity after alcohol consumption, the area covered by adhered platelets increased by 3.12 times compared to that before alcohol consumption. This microfluidic chip offers potential for personalized health monitoring by distinguishing platelet variations caused by lifestyle or dietary habits. However, challenges such as reinjection procedures and large sample volumes require further investigation.