The etiology and pathogenesis of Alzheimer's disease (AD) are complex, and currently, no comprehensive treatment measures exist. In this study, we initially utilized ultra-high-performance liquid chromatography with quadrupole orbitrap mass spectrometry (UHPLC-QE-MS) to profile the bioactive constituents of SZLOL present in the bloodstream. Subsequent Y-maze experimental data demonstrated that SZLOL could ameliorate short-term memory deficits in APP/PS1 mice. Furthermore, micro-positron emission tomography (Micro-PET) experiments revealed that SZLOL enhanced glucose metabolism in the cerebral cortex of the mice. To model AD in vitro, we utilized Aβ42-induced SH-SY5Y cells and assessed the effects of SZLOL-containing serum on cell growth and migration using immunofluorescence and wound-healing assays. Both in vivo and in vitro Western blot analyses indicated that SZLOL and SZLOL-containing serum were capable of activating the PI3K/Akt signaling pathway, which modulates the expression of inflammatory mediators. In future studies, we will validate our findings in more animal and cell models.
Keywords: Alzheimer’s disease; Autophagy; Neuroinflammation; PI3K/Akt pathway; Shen Zhi Ling oral liquid.
© King Abdulaziz City for Science and Technology 2025. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.